Abstract
Ga-71 NQR, magnetization, and specific-heat measurements have been performed on polycrystalline Ge-doped FeGa3 samples. A crossover from an insulator to a correlated local moment metal in the low-doping regime and the evolution of itinerant ferromagnet upon further doping is found. For the nearly critical concentration at the threshold of ferromagnetic order, x(C) = 0.15, (71)(1/T1T) exhibits a pronounced T-4/3 power law over two orders of magnitude in temperature, which indicates three-dimensional quantum critical ferromagnetic fluctuations. Furthermore, for the ordered x = 0.2 sample (T-C approximate to 6K), (71)(1/T1T) could be fitted well in the frame of Moriya's self-consistent renormalization theory for weakly ferromagnetic systems with 1/T1T similar to chi. In contrast to this, the low-doping regime nicely displays local moment behavior where 1/T1T similar to chi(2) is valid. For T -> 0, the Sommerfeld ratio gamma = (C/T) is enhanced (70 mJ/mole K-2 for x = 0.1), which indicates the formation of heavy 3d electrons.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences |
Subjects: | 500 Science > 550 Earth sciences and geology |
ISSN: | 2469-9950 |
Language: | English |
Item ID: | 48874 |
Date Deposited: | 27. Apr 2018, 08:16 |
Last Modified: | 04. Nov 2020, 13:26 |