Abstract
One-dimensional transition metal (TM)-Fe nanowires of single-atom width can be formed on a stepped Cu(111) surface. The electronic magneto-crystalline anisotropy and magnetic dipolar (shape) anisotropy energies are calculated for an isolated and deposited TM-Fe wire series that ranges from V to Co along the fourth period of elements. For linear atomic V chains, the shape anisotropy energy is comparable to the electronic energy. The shape anisotropy energy dominates for Cr/Mn chains while it has a minor influence for Co/Fe. The electronic contributions to the anisotropy energies are always dominant for TM-Fe wires in both isolated and deposited cases. All linear structures exhibit axial magnetization except for the Cr chain, which exhibits perpendicular magnetization. All isolated TM-Fe wires have large magnetic anisotropy energies and easy magnetization along the perpendicular axis. In deposited TM-Fe wires, the electronic anisotropy energies are higher for Mn-Fe and Fe-Fe and lower for V-Fe, Cr-Fe and Co-Fe wires. Deposited TM-Fe wires magnetize easily perpendicular to the Cu surface except for Co-Fe, which prefers in-plane magnetization. The large magnetic anisotropies of Fe-Fe and Mn-Fe wires points to potential application in ultra-high density data storage.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences |
Subjects: | 500 Science > 550 Earth sciences and geology |
ISSN: | 2046-2069 |
Language: | English |
Item ID: | 49038 |
Date Deposited: | 27. Apr 2018, 08:16 |
Last Modified: | 04. Nov 2020, 13:26 |