Abstract
We present a versatile nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetoelastic stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g., by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. In a proof-of-principle experiment, we determine the magnetostriction constants of a 10 nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique aims, in particular, for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by, e.g., electron beam deposition, thermal evaporation, or sputtering. (C) 2016 AIP Publishing LLC.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Fakultätsübergreifende Einrichtungen: | Nanosystems Initiative Munich (NIM) |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0021-8979 |
Sprache: | Englisch |
Dokumenten ID: | 49083 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:16 |
Letzte Änderungen: | 04. Nov. 2020, 13:26 |