Sellner, Sabine; Kocabey, Samet; Zhang, Tao; Nekolla, Katharina; Hutten, Saskia; Krombach, Fritz; Liedl, Tim; Rehberg, Markus (2017): Dexamethasone-conjugated DNA nanotubes as anti-inflammatory agents in vivo. In: Biomaterials, Vol. 134: pp. 78-90 |
Abstract
The biopolymer DNA allows to create nanoscale, biocompatible structures, which can be designed in a target-specific and stimuli-responsive manner. DNA carrier systems with these characteristics hold a great potential for nanomedical applications, such as for the treatment of inflammatory diseases. Here we used a DNA-based drug carrier system for the pH-dependent delivery of the glucocorticoid dexamethasone into macrophages, a cell type with a key role in the regulation of inflammation. Dexamethasone (Dex) nanotubes were internalized within minutes by MH-S macrophages in vitro and by tissue resident macrophages in the mouse cremaster muscle in vivo and localized in their endosomes. Treatment with Dex nanotubes in vitro significantly reduced the LPS-induced TNF secretion by macrophages, as compared to equivalent amounts of free dexamethasone without affecting cell viability. Microinjection of Dex nanotubes into postischemic muscle tissue of anesthetized mice resulted in a marked reduction of ischemia-reperfusion-elicited leukocyte transmigration and diminished vascular expression of the endothelial adhesion molecules VCAM-1 and ICAM-1. Taken together, our results demonstrate that DNA nanotubes can be used as a platform for the targeted delivery of glucocorticoids and could thus foster the development of nanomedical therapeutics with reduced off-target effects.
Item Type: | Journal article |
---|---|
Faculties: | Medicine Physics |
Subjects: | 600 Technology > 610 Medicine and health 500 Science > 530 Physics |
ISSN: | 0142-9612 |
Language: | English |
ID Code: | 49969 |
Deposited On: | 14. Jun 2018 09:42 |
Last Modified: | 04. Nov 2020 13:27 |