Logo Logo
Hilfe
Hilfe
Switch Language to English

Schmohl, Kathrin A.; Gupta, Aayush; Grünwald, Geoffrey K.; Trajkovic-Arsic, Marija; Klutz, Kathrin; Braren, Rickmer; Schwaiger, Markus; Nelson, Peter J.; Ogris, Manfred; Wagner, Ernst; Siveke, Jens T. und Spitzweg, Christine (2017): Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene. In: Oncotarget, Bd. 8, Nr. 20: S. 33393-33404 [PDF, 5MB]

Abstract

The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active Kras(G12D) and deletion of Trp53. We used tumor-targeted polyplexes (LPEIPEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo I-123 gamma camera imaging and three-dimensional high-resolution I-124 PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of I-131 in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery.

Dokument bearbeiten Dokument bearbeiten