Logo Logo
Switch Language to German
Siller, Sebastian; Szelenyi, Andrea; Herlitz, Lisa; Tonn, Jörg Christian; Zausinger, Stefan (2017): Spinal cord hemangioblastomas: significance of intraoperative neurophysiological monitoring for resection and long-term outcome. In: Journal of Neurosurgery-Spine, Vol. 26, No. 4: pp. 483-493
Full text not available from 'Open Access LMU'.


OBJECTIVE Spinal cord hemangioblastomas are rare benign tumors developing either sporadically or as part of von Hippel-Lindau (VHL) disease. Generally, resection is the treatment of choice. However, the significance of intraoperative neurophysiological monitoring (IONM) for resection and postoperative outcome is still controversial. The authors analyzed the surgical and clinical courses of patients who had undergone resection of spinal cord hemangioblastoma, with special attention to preoperative imaging, the use of IONM, and short- and long-term outcomes. METHODS A series of 24 patients (male/female 1:1, lesion sporadic/associated with VHL 2.4:1) who had undergone 26 operations for the resection of 27 spinal cord hemangioblastomas was analyzed. All patients had undergone pre- and postoperative contrast-enhanced MRI. In all cases, microsurgical tumor removal had been performed under continuous IONM of both somatosensory and transcranial motor evoked potentials as well as electromyographic recording. Clinical characteristics, imaging findings, and operative records were retrospectively analyzed. Outcome parameters included short- and long-term status as regards sensorimotor deficits and a questionnaire on general performance, patient satisfaction, and Oswestry Disability Index (ODI) at the end of the follow-up period. The impact of IONM findings on postoperative deficits and outcome parameters as well as risk factors affecting functional prognosis was statistically assessed. RESULTS Preoperative symptoms (mean duration 16.2 +/- 22.0 months) included sensory changes (100.0%), pain (66.7%), spinal ataxia (66.7%), motor deficit (41.7%), and bladder/bowel dysfunction (12.5%). Average age at the first operation was 36.8 +/- 12.8 years. Most tumors (21 intramedullary, 6 intra- and/or extramedullary) were located dorsally (92.6%) and cervically (77.8%) and were accompanied by peritumoral edema and/or syringomyelia (81.5%). Tumor resection was achieved via laminectomy for 15 tumors, hemilaminectomy for 5, laminoplasty for 6, and interlaminar approach for 1. Gross-total resection was accomplished for 26 tumors (96.3%) with no local tumor recurrence during follow-up. Intraoperative neurophysiological monitoring was nonpathological in 11 operations (42.3%) and pathological in 15 (57.7%). Patients with nonpathological IONM had significantly fewer new sensorimotor deficits (p = 0.005). Long-term follow-up evaluation (mean 7.9 +/- 4.0 years postoperatively, 7 patients lost to follow-up) revealed a stable or improved McCormick myelopathy grade in 88.2% of the patients, and 88.2% reported a stable or improved overall outcome according to Odom's criteria. Long-term general performance was excellent with 88.2% having a WHO/Eastern Cooperative Oncology Group (ECOG) Performance Status grade <= 1, 76.5% a Karnofsky Performance Scale score 80, and 70.6% a Barthel Index (BI) of 100. The mean ODI (11.4% +/- 12.5%) indicated only minimal disability. There was a significant correlation between pathological IONM findings and a worse long-term status according to the BI and ODI (p = 0.011 and 0.024, respectively). Additionally, VHL disease was a risk factor affecting functional prognosis (p = 0.044). CONCLUSIONS Microsurgical removal of spinal cord hemangioblastomas with IONM facilitates a satisfying long-term outcome for patients. Nonpathological IONM findings are associated with a lower risk of new sensorimotor deficits and correlate with a better overall long-term outcome. von Hippel Lindau disease is a risk factor for a worse long-term prognosis.