Abstract
Released (co)monomers from dental composite components can induce DNA damage of which DNA double-strand breaks (DSBs) threaten genome integrity. Here, we tested whether the administration of the antioxidant N-acetylcysteine (NAC) is able to reduce the dental composite-induced DSBs in primary human gingiva fibroblasts. The dental composites Bis-GMA (bisphenol-Aglycerolate dimethacrylate), GlVIA (glycidyl methacrylate), HEMA (2-hydroxyethyl methacrylate) and TEGDMA (triethyleneglycol dimethacrylate) were found to induce co-localizing microscopic nuclear foci numbers of the DSB markers gamma-H2AX and 53BP1 per cell in the order: GMA>Bis-GMA>TEGDMA>HEMA. Supplementation of (co)monomer-containing culture medium with NAC led to a significant reduction of resin-induced DSBs as well as to an amelioration of dental monomer-induced nuclear chromatin condensation in gingival fibroblasts. Thus, antioxidant treatment can reduce radical-induced chromatin and DNA damage and open avenues to mitigate genotoxic effects of dental composite compounds.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
ISSN: | 0287-4547 |
Language: | English |
Item ID: | 50530 |
Date Deposited: | 14. Jun 2018, 09:43 |
Last Modified: | 04. Nov 2020, 13:28 |