Abstract
Let A be an abelian variety over a number field k and let F be a finite cyclic extension of k of p-power degree for an odd prime p. Under certain technical hypotheses, we obtain a reinterpretation of the equivariant Tamagawa number conjecture ('eTNC') for A, F/k and p as an explicit family of p-adic congruences involving values of derivatives of the Hasse-Weil L-functions of twists of A, normalised by completely explicit twisted regulators. This reinterpretation makes the eTNC amenable to numerical verification and furthermore leads to explicit predictions which refine well-known conjectures of Mazur and Tate.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0075-4102 |
Sprache: | Englisch |
Dokumenten ID: | 53446 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:53 |
Letzte Änderungen: | 13. Aug. 2024, 12:41 |