Abstract
We discuss thermotropic nematic liquid crystals in the mean-field regime. In the first part of this article, we rigorously carry out the mean-field limit of a system of N rod-like particles as N -> infinity, which yields an effective 'one-body' free energy functional. In the second part, we focus on spatially homogeneous systems, for which we study the associated Euler-Lagrange equation, with a focus on phase transitions for general axisymmetric potentials. We prove that the system is isotropic at high temperature, while anisotropic distributions appear through a transcritical bifurcation as the temperature is lowered. Finally, as the temperature goes to zero we also prove, in the concrete case of the Maier-Saupe potential, that the system converges to perfect nematic order.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 0022-4715 |
| Sprache: | Englisch |
| Dokumenten ID: | 53461 |
| Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018 09:53 |
| Letzte Änderungen: | 13. Aug. 2024 12:42 |
