Abstract
We discuss thermotropic nematic liquid crystals in the mean-field regime. In the first part of this article, we rigorously carry out the mean-field limit of a system of N rod-like particles as N -> infinity, which yields an effective 'one-body' free energy functional. In the second part, we focus on spatially homogeneous systems, for which we study the associated Euler-Lagrange equation, with a focus on phase transitions for general axisymmetric potentials. We prove that the system is isotropic at high temperature, while anisotropic distributions appear through a transcritical bifurcation as the temperature is lowered. Finally, as the temperature goes to zero we also prove, in the concrete case of the Maier-Saupe potential, that the system converges to perfect nematic order.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Mathematics |
Subjects: | 500 Science > 510 Mathematics |
ISSN: | 0022-4715 |
Language: | English |
Item ID: | 53461 |
Date Deposited: | 14. Jun 2018, 09:53 |
Last Modified: | 13. Aug 2024, 12:42 |