Abstract
Using sheaves of A(1)-connected components, we prove that the Morel-Voevodsky singular construction on a reductive algebraic group fails to be A(1)-local if the group does not satisfy suitable isotropy hypotheses. As a consequence, we show the failure of A(1)-invariance of torsors for such groups on smooth affine schemes over infinite perfect fields. We also characterize A(1)-connected reductive algebraic groups over a field of characteristic 0.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 0002-9947 |
| Sprache: | Englisch |
| Dokumenten ID: | 53462 |
| Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018 09:53 |
| Letzte Änderungen: | 13. Aug. 2024 12:42 |
