Abstract
For nu is an element of [0, 1], let D-nu be the distinguished self-adjoint realisation of the threedimensional Coulomb-Dirac operator -i alpha center dot del -nu vertical bar center dot vertical bar(-1). For nu is an element of [0, 1), we prove the lower bound of the form vertical bar D-nu vertical bar >= C-nu root-Delta, where C-nu is found explicitly and is better than in all previous studies on the topic. In the critical case nu = 1, we prove that for every lambda is an element of[0, 1), there exists K-lambda > 0 such that the estimate vertical bar D-1 vertical bar >= K(lambda)a(lambda-1) (-Delta)(lambda/2) - a(-1) holds for all a > 0. As applications, we extend the range of coupling constants in the proof of the stability of the relativistic electron-positron field and obtain Cwickel-LiebRozenblum and Lieb-Thirring type estimates on the negative eigenvalues of perturbed projected massless Coulomb-Dirac operators in the Furry picture. We also study the existence of a virtual level at zero for such projected operators. Published by AIP Publishing.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0022-2488 |
Sprache: | Englisch |
Dokumenten ID: | 53464 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:53 |
Letzte Änderungen: | 13. Aug. 2024, 12:42 |