Abstract
Imaging techniques can be compromised by aberrations. Especially when imaging through biological specimens, sample-induced distortions can limit localization accuracy. In particular, this phenomenon affects localization microscopy, traction force measurements, and single particle tracking, which offer high-resolution insights into biological tissue. Here we present a method for quantifying and correcting the optical distortions induced by single, adherent, living cells. The technique uses periodically patterned gold nanostructures as a reference framework to quantify optically induced displacements with micrometer-scale sampling density and an accuracy of a few nanometers. The 3D cell shape and a simplified geometrical optics approach are then utilized to remap the microscope image. Our experiments reveal displacements of up to several hundred nanometers, and in corrected images these distortions are reduced by a factor of 3. Conversely, the relationship between cell shape and distortion provides a novel method of 3D cell shape reconstruction from a single image, enabling label-free 3D cell analysis.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik
Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 1530-6984 |
Sprache: | Englisch |
Dokumenten ID: | 53497 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:53 |
Letzte Änderungen: | 08. Nov. 2023, 18:32 |