Logo Logo
Hilfe
Hilfe
Switch Language to English
Adersberger, M.; Bender, M.; Biebel, O.; Bock, C.; Bogavac, D.; Duckeck, G.; Flierl, B. M.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hönig, F.; Legger, F.; Lorenz, J.; Lösel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Mitrevski, J.; Müller, R. S. P.; Schachtner, B. M.; Rauscher, F.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Wagner-Kuhr, J.; Walker, R. (2017): Measurement of multi-particle azimuthal correlations in pp, p plus Pb and low-multiplicity Pb plus Pb collisions with the ATLAS detector. In: European Physical Journal C, Vol. 77, Nr. 6, 428
Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at root S = 5.02 and 13 TeV and in p + Pb collisions at root S-NN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb + Pb collisions at root S-NN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb + Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb + Pb, smaller in p + Pb and smallest in pp collisions. The pp results show no dependence on the collision energy, nor on the multiplicity.