Logo Logo
Hilfe
Hilfe
Switch Language to English

Sharapov, Alexey und Skvortsov, Evgeny (2017): Formal higher-spin theories and Kontsevich-Shoikhet-Tsygan formality. In: Nuclear Physics B, Bd. 921: S. 538-584

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

The formal algebraic structures that govern higher-spin theories within the unfolded approach turn out to be related to an extension of the Kontsevich formality, namely, the Shoikhet-Tsygan formality. Effectively, this allows one to construct the Hochschild cocycles of higher-spin algebras that make the interaction vertices. As an application of these results we construct a family of Vasiliev-like equations that generate the Hochschild cocycles with sp(2n) symmetry from the corresponding cycles. A particular case of sp(4) may be relevant for the on-shell action of the 4d theory. We also give the exact equations that describe propagation of higher-spin fields on a higher-spin flat background. The consistency of formal higher-spin theories turns out to have a purely geometric interpretation: there exists a certain symplectic invariant associated to cutting a polytope into simplices, namely, the Alexander-Spanier cocycle. (C) 2017 The Author(s). Published by Elsevier B.V.

Dokument bearbeiten Dokument bearbeiten