Abstract
The formal algebraic structures that govern higher-spin theories within the unfolded approach turn out to be related to an extension of the Kontsevich formality, namely, the Shoikhet-Tsygan formality. Effectively, this allows one to construct the Hochschild cocycles of higher-spin algebras that make the interaction vertices. As an application of these results we construct a family of Vasiliev-like equations that generate the Hochschild cocycles with sp(2n) symmetry from the corresponding cycles. A particular case of sp(4) may be relevant for the on-shell action of the 4d theory. We also give the exact equations that describe propagation of higher-spin fields on a higher-spin flat background. The consistency of formal higher-spin theories turns out to have a purely geometric interpretation: there exists a certain symplectic invariant associated to cutting a polytope into simplices, namely, the Alexander-Spanier cocycle. (C) 2017 The Author(s). Published by Elsevier B.V.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0550-3213 |
Sprache: | Englisch |
Dokumenten ID: | 53728 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:53 |
Letzte Änderungen: | 04. Nov. 2020, 13:32 |