Abstract
Two non-equidistant grid implementations of infinite range exterior complex scaling are introduced that allow for perfect absorption in the time dependent Schrodinger equation. Finite element discrete variables discretizations provide as efficient absorption as the corresponding finite elements discretizations. This finding is at variance with results reported in literature [L. Tao et al., Phys. Rev. A 48, 063419 (2009)]. For finite differences, a new class of generalized Q-point schemes for non-equidistant grids is derived. Convergence of absorption is exponential similar to Delta x(Q-1) and numerically robust. Local relative errors less than or similar to 10(-9) are achieved in a standard problem of strong-field ionization.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0021-9991 |
Sprache: | Englisch |
Dokumenten ID: | 53964 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:54 |
Letzte Änderungen: | 04. Nov. 2020, 13:33 |