Abstract
Light-driven electronic motion unfolds on times as short as the cycle period of light and on length scales as small as the distance between two neighboring atoms in a molecule. Visualizing fundamental light-matter interactions therefore requires access to attosecond and picometer dimensions. Here we report on a potential unification of electron diffraction and microscopy with attosecond technology, which could provide a full space-time access to elementary electronic processes in matter and materials. We review recent progress in ultrafast diffraction and microscopy towards temporal resolutions approaching 10 fs by use of state-of-the-art microwave technology and discuss our latest findings on all-optical compression approaches for reaching sub-femtosecond, sub-optical-cycle resolution. Four-dimensional electron diffraction with attosecond-picometer resolution will access all dynamics outside the atomic core, offering an all-embracing insight into fundamental electron-nuclear dynamics of complex materials.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0009-2614 |
Sprache: | Englisch |
Dokumenten ID: | 53973 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:54 |
Letzte Änderungen: | 04. Okt. 2023, 14:41 |