Abstract
Hybrid metal halide perovskites have become one of the hottest topics in optoelectronic materials research in recent years. Not only have they surpassed everyone's expectations and achieved similar performance as tried and true polycrystalline silicon photovoltaic devices, but they are also finding applications in a variety of different fields, including lighting. The main advantages of hybrid metal halide perovskites are simple processability, compatible with large-scale solution processing such as roll-to-roll printing, and abundance of ingredients, all coupled to materials properties reminiscent of GaAs. On the road to this remarkable success, a series of challenges have been overcome, while some still remain. In this review, some of these challenges and possible solutions are described. In particular, understanding of the perovskite crystallization process and how this knowledge can be harnessed to enable better performing devices, how to overcome reproducibility issues and mitigate hysteresis, and the long-term prospects of the technology in terms of stability and sustainability will all be discussed.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Fakultätsübergreifende Einrichtungen: | Center for NanoScience (CENS) |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie
500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften |
ISSN: | 1614-6832 |
Sprache: | Englisch |
Dokumenten ID: | 54180 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:55 |
Letzte Änderungen: | 04. Nov. 2020, 13:33 |