Logo Logo
Hilfe
Hilfe
Switch Language to English

Weber, Daniel; Schoop, Leslie M.; Wurmbrand, Daniel; Nuss, Jürgen; Seibel, Elizabeth M.; Tafti, Fazel Fallah; Ji, Huiwen; Cava, Robert J.; Dinnebier, Robert E. und Lotsch, Bettina V. (2017): Trivalent Iridium Oxides: Layered Triangular Lattice Iridate K0.75Na0.25IrO2 and Oxyhydroxide IrOOH. In: Chemistry of Materials, Bd. 29, Nr. 19: S. 8338-8345

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Solid oxides with transition-metal ions in unusual oxidation states attract enormous attention due to their electronic, magnetic, and catalytic properties. Yet, no crystalline oxide compounds based on purely trivalent iridium have been characterized to date. Here, we present the synthesis and thorough investigation of the properties of the compounds K0.75Na0.25IrO2 and IrOOH, both containing trivalent iridium on a triangular lattice in layers of [IrO2](-). K0.75Na0.25IrO2 crystallizes in a P2-structure with the space group P6(3)/mmc, while the crystal structure of IrOOH adopts the direct maximal subgroup P (3) over bar m1. The trivalent state of the iridium ion is discussed with regards to the iridium oxygen bond length from X-ray diffraction, the chemical composition, the electronic and magnetic behavior of the material, and X-ray photoemission spectroscopy. The discovery of a ternary crystalline iridium oxides is not only of interest from a fundamental perspective, but also has far-reaching implications for such diverse fields as electrochromism, solid-state magnetism, and especially heterogeneous catalysis. new valence state in ternary crystalline iridium oxides is not only of interest from a fundamental perspective, but also has far-reaching implications for such diverse fields as electrochromism, solid-state magnetism, and especially heterogeneous catalysis.

Dokument bearbeiten Dokument bearbeiten