Abstract
Until recently, it was believed that the genomes of higher organisms contain, in addition to the four canonical DNA bases, only 5-methyl-dC (m(5)dC) as a modified base to control epigenetic processes. In recent years, this view has changed dramatically with the discovery of 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC) in DNA from stem cells and brain tissue. N-6-methyldeoxyadenosine (m(6)dA) is the most recent base reported to be present in the genome of various eukaryotic organisms. This base, together with N-4-methyldeoxycytidine (m(4)dC), was first reported to be a component of bacterial genomes. In this work, we investigated the levels and distribution of these potentially epigenetically relevant DNA bases by using a novel ultrasensitive UHPLC-MS method. We further report quantitative data for m(5)dC, hmdC, fdC, and cadC, but we were unable to detect either m(4)dC or m(6)dA in DNA isolated from mouse embryonic stem cells or brain and liver tissue, which calls into question their epigenetic relevance.
Item Type: | Journal article |
---|---|
Faculties: | Biology > Department Biology I |
Research Centers: | Center for Integrated Protein Science Munich (CIPSM) |
Subjects: | 500 Science > 570 Life sciences; biology 500 Science > 540 Chemistry |
ISSN: | 1433-7851 |
Language: | English |
Item ID: | 54523 |
Date Deposited: | 14. Jun 2018, 09:56 |
Last Modified: | 04. Nov 2020, 13:34 |