Abstract
The rocks along the southwestern margin of the Kaapvaal Craton were deformed up to 7 times during the Early to Middle Proterozoic. The oldest deformation D1 is recorded in the N-S-trending Uitkoms cataclasite of pre-Makganyene age (>2.24 Ga) on the craton, and interpreted as a bedding-parallel thrust. It is assumed to be a branch rising towards the surface from a blind sole thrust that initiated early N-S-trending F,-folds above it. D2 is represented by mainly N-S but also NE-SW and NW-SE-trending imbricates and recumbent fold zones ranging in size from small gravity slumps to large tectonic decollements in Asbesheuwel BIF and the Koegas Subgroup, and is younger than D1, or equals D1 in age. These age. These structures pre-date the Westerberg dyke-sheet intrusion. D3 south-verging folds and thrusts are the oldest post-Matsap deformations, just less than 2.07-1.88 Ga. D4 are upright to east vergent and N-S-trending folds deforming all previous structures. D4 post-dates the Westerberg dyke-sheet and probably reactivates N-S folds above the earlier sole thrust during renewed E-W compression. D5, producing the main NW-trending Namaqua structures, is only very feebly developed in the Kheis terrain and absent from the cratonic areas overlain by Olifantshoek and older strata, i.e. NE, E and SE of the Marydale High. Very gentle D6 E-W to ENE-WSW folds produce culminations and depressions in all NW-trending older structures. During D7 the NW-SE-trending Doornberg Lineament, an oblique left-lateral wrench, and smaller N-trending faults such as the Westerberg Fault developed. These and similar, but right-lateral faults are the last movements along the rim of the craton and occurred around 1.0 Ga.
Multiple folding and thrusting with riebeckite mobilization happened prior to Namaqua events and resulted inter alia in discernable duplication and thickening of the Transvaal Supergroup along the southwestern margin of the Kaapvaal Craton and at least some 130 km into the craton interior. This complicates stratigraphic correlation as well as true thickness estimates of BIF units in Griqualand West, and affects the model for the environmental evolution of the Ghaap Group. A structural model of thin-skin decoupling at the base of the Transvaal Supergroup and starting in the Middle-Early Proterozoic is proposed.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Geowissenschaften > Department für Geo- und Umweltwissenschaften > Geologie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie |
URN: | urn:nbn:de:bvb:19-epub-5457-3 |
Sprache: | Englisch |
Dokumenten ID: | 5457 |
Datum der Veröffentlichung auf Open Access LMU: | 06. Aug. 2008, 16:14 |
Letzte Änderungen: | 04. Nov. 2020, 12:48 |