Logo Logo
Help
Contact
Switch Language to German
Chiasson, David M.; Haage, Kristina; Sollweck, Katharina; Brachmann, Andreas; Dietrich, Petra; Parniske, Martin (2017): A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. In: Elife, Vol. 6, e25012
[img]
Preview
1MB

Abstract

The coordinated control of Ca2+ signaling is essential for development in eukaryotes. Cyclic nucleotide-gated channel (CNGC) family members mediate Ca2+ influx from cellular stores in plants (Charpentier et al., 2016;Gao et al., 2016;Frietsch et al., 2007;Urquhart et al., 2007). Here, we report the unusual genetic behavior of a quantitative gain-of-function CNGC mutation (brush) in Lotus japonicus resulting in a leaky tetrameric channel. brush resides in a cluster of redundant CNGCs encoding subunits which resemble metazoan voltage-gated potassium (Kv1-Kv4) channels in assembly and gating properties. The recessive mongenic brush mutation impaired root development and infection by nitrogen-fixing rhizobia. The brush allele exhibited quantitative behavior since overexpression of the cluster subunits was required to suppress the brush phenotype. The results reveal a mechanism by which quantitative competition between channel subunits for tetramer assembly can impact the phenotype of the mutation carrier.