Logo Logo
Hilfe
Hilfe
Switch Language to English

Dohrmann, Martin und Wörheide, Gert ORCID logoORCID: https://orcid.org/0000-0002-6380-7421 (2017): Dating early animal evolution using phylogenomic data. In: Scientific Reports, Bd. 7, 3599 [PDF, 1MB]

Abstract

Information about the geological timeframe during which animals radiated into their major subclades is crucial to understanding early animal ecology and evolution. Unfortunately, the pre-Cambrian fossil record is sparse and its interpretation controversial. Relaxed molecular-clock methods provide an alternative means of estimating the timing of cladogenesis deep in the metazoan tree of life. So far, thorough molecular clock studies focusing specifically on Metazoa as a whole have been based on relatively small datasets or incomplete representation of the main non-bilaterian lineages (such as sponges and ctenophores), which are fundamental for understanding early metazoan evolution. Here, we use a previously published phylogenomic dataset that includes a fair sampling of all relevant groups to estimate the timing of early animal evolution with Bayesian relaxed-clock methods. According to our results, all non-bilaterian phyla, as well as total-group Bilateria, evolved in an ancient radiation during a geologically relatively short time span, before the onset of long-term global glaciations ("Snowball Earth";similar to 720-635 Ma). Importantly, this result appears robust to alterations of a number of important analytical variables, such as models of among-lineage rate variation and sets of fossil calibrations used.

Dokument bearbeiten Dokument bearbeiten