Logo Logo
Hilfe
Hilfe
Switch Language to English

Wadsworth, Fabian B.; Vasseur, Jeremie; Llewellin, Edward W. und Dingwell, Donald B. (2017): Sintering of polydisperse viscous droplets. In: Physical Review E, Bd. 95, Nr. 3, 33114

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Sintering-or coalescence-of compacts of viscous droplets is driven by the interfacial tension between the droplets and the interstitial gas phase. The process, which occurs in a range of industrial and natural settings, such as the manufacture of ceramics and the welding of volcanic ash, causes the compact to densify, to become stronger, and to become less permeable. We investigate the role of droplet polydispersivity in sintering dynamics by conducting experiments in which populations of glass spheres with different size distributions are heated to temperatures above the glass transition interval. We quantify the progress of sintering by tracking changes in porosity with time. The sintering dynamics is modeled by treating the system as a random distribution of interstitial gas bubbles shrinking under the action of interfacial tension only. We identify the scaling between the polydispersivity of the initial droplets and the dynamics of bulk densification. The framework that we develop allows the sintering dynamics of arbitrary polydisperse populations of droplets to be predicted if the initial droplet (or particle) size distribution is known.

Dokument bearbeiten Dokument bearbeiten