Logo Logo
Help
Contact
Switch Language to German
Wang, Shanshan; Reinhard, Sören; Li, Chengyi; Qian, Min; Jiang, Huiling; Du, Yilin; Lächelt, Ulrich; Lu, Weiyue; Wagner, Ernst; Huang, Rongqin (2017): Antitumoral Cascade-Targeting Ligand for IL-6 Receptor-Mediated Gene Delivery to Glioma. In: Molecular therapy, Vol. 25, No. 7: pp. 1556-1566
Full text not available from 'Open Access LMU'.

Abstract

The effective treatment of glioma is largely hindered by the poor transfer of drug delivery systems across the blood-brain barrier (BBB) and the difficulty in distinguishing healthy and tumorous cells. In this work, for the first time, an inter-leukin-6 receptor binding I6P7 peptide was exploited as a cascade-targeting ligand in combination with a succinoyl tetraethylene pentamine (Stp)-histidine oligomer-based nonviral gene delivery system (I6P7-Stp-His/DNA). The I6P7 peptide provides multiple functions, including the cascade-targeting potential represented by a combined BBB-crossing and subsequent glioma-targeting ability, as well as a direct tumor-inhibiting effect. I6P7-Stp-His/DNA nanoparticles (NPs) mediated higher gene expression in human glioma U87 cells than in healthy human astrocytes and a deeper penetration into glioma spheroids than scrambled peptide-modified NPs. Transport of I6P7-modified, but not the control, NPs across the BBB was demonstrated in vitro in a transwell bEnd.3 cell model resulting in transfection of underlying U87 cells and also in vivo in glioma-bearing mice. Intravenous administration of I6P7-Stp-His/plasmid DNA (pDNA)-encoding inhibitor of growth 4 (pING4) significantly prolonged the survival time of orthotopic U87 glioma-bearing mice. The results denote that I6P7 peptide is a roborant cascade-targeting ligand, and I6P7-modified NPs might be exploited for efficient glioma therapy.