Abstract
Na+ channel currents of rat motor and sensory nerve fibres were studied with the patch-clamp technique on enzymatically demyelinated axons. Differences between motor and sensory fibres in multi-channel inactivation kinetics and the gating of late single-channel currents were investigated. In the axon-attached mode, inactivation of multi-channel Na+ currents in sensory axons was best fitted with a single time constant while for motor axons two time constants were needed. Late single-channel currents in sensory axons were characterized by short openings whereas motor axons exhibited additional long single-channel openings. In contrast, in excised, inside-out membrane patches, no differences between motor and sensory fibres were found: in both types of fibre inactivation of multi-channel Na+ currents proceeded with two time constants and late single-channel currents showed short and long openings. After application of the reducing agent glutathione to the cytoplasmic side of excised inside-out patches, inactivation of Na+ currents in both motor and sensory fibres proceeded with a single, fast exponential time constant and late currents appeared with short openings only. These data indicate that the axonal metabolism may contribute to the different inactivation kinetics of Na+ currents in motor and sensory nerve fibres.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Keywords: | Axon - Peripheral nerve - Patch clamp - Ion channels - Metabolism - Glutathione - Iodate - Monochlorobimane |
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-5521-0 |
Dokumenten ID: | 5521 |
Datum der Veröffentlichung auf Open Access LMU: | 07. Aug. 2008, 15:18 |
Letzte Änderungen: | 04. Nov. 2020, 12:48 |