Logo Logo
Switch Language to German
Storch, Ursula; Forst, Anna-Lena; Pardatscher, Franziska; Erdogmus, Serap; Philipp, Maximilian; Gregoritza, Manuel; Mederos y Schnitzlera, Michael; Gudermann, Thomas (2017): Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 114, No. 1, E37-E46
Full text not available from 'Open Access LMU'.


The activation mechanism of the classical transient receptor potential channels TRPC4 and -5 via the G(q/11) protein-phospholipase C (PLC) signaling pathway has remained elusive so far. In contrast to all other TRPC channels, the PLC product diacylglycerol (DAG) is not sufficient for channel activation, whereas TRPC4/5 channel activity is potentiated by phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. As a characteristic structural feature, TRPC4/5 channels contain a C-terminal PDZ-binding motif allowing for binding of the scaffolding proteins Na+/H+ exchanger regulatory factor (NHERF) 1 and 2. PKC inhibition or the exchange of threonine for alanine in the C-terminal PDZ-binding motif conferred DAG sensitivity to the channel. Altogether, we present a DAG-mediated activation mechanism for TRPC4/5 channels tightly regulated by NHERF1/2 interaction. PIP2 depletion evokes a C-terminal conformational change of TRPC5 proteins leading to dynamic dissociation of NHERF1/2 from the C terminus of TRPC5 as a prerequisite for DAG sensitivity. We show that NHERF proteins are direct regulators of ion channel activity and that DAG sensitivity is a distinctive hallmark of TRPC channels.