Logo Logo
Hilfe
Hilfe
Switch Language to English

Ziegler, Tilman; Hinkel, Rabea; Stöhr, Andrea; Eschenhagen, Thomas; Laugwitz, Karl-Ludwig; Le Noble, Ferdinand; David, Robert; Hansen, Arne und Kupatt, Christian (2017): Thymosin beta 4 Improves Differentiation and Vascularization of EHTs. In: Stem Cells international, Bd. 2017, 6848271 [PDF, 2MB]

[thumbnail of 6848271.pdf]
Vorschau
Download (2MB)

Abstract

Induced pluripotent stem cells (iPSC) constitute a powerful tool to study cardiac physiology and represents a promising treatment strategy to tackle cardiac disease. However, iPSCs remain relatively immature after differentiation. Additionally, engineered heart tissue (EHT) has been investigated as a therapy option in preclinical disease models with promising results, although their vascularization and functionality leave room for improvement. Thymosin beta 4 (T beta 4) has been shown to promote the differentiation of progenitor cell lines to cardiomyocytes while it also induces angiogenic sprouting and vascular maturation. We examined the potential impact of T beta 4 to enhance maturation of cardiomyocytes from iPSCs. Assessing the expression of transcription factors associated with cardiac differentiation, we were able to demonstrate the increased generation of cells displaying cardiomyocyte characteristics in vitro. Furthermore, we demonstrated, in a zebrafish model of embryonic vascular development, that T beta 4 is crucial for the proper execution of lymphatic and angiogenic vessel sprouting. Finally, utilizing T beta 4-transduced EHTs generated from mice genetically engineered to label endothelial cells in vitro, we show that treatment with T beta 4 promotes vascularization and contractility in EHTs, highlighting T beta 4 as a growth factor improving the formation of cardiomyocytes from iPSC and enhancing the performance of EHTs generated from neonatal cardiomyocytes.

Dokument bearbeiten Dokument bearbeiten