Abstract
One implication of Bell's theorem is that there cannot in general be hidden variable models for quantum mechanics that both are noncontextual and retain the structure of a classical probability space. Thus, some hidden variable programs aim to retain noncontextuality at the cost of using a generalization of the Kolmogorov probability axioms. We generalize a theorem of Feintzeig (Br J Philos Sci 66(4): 905-927, 2015) to show that such programs are committed to the existence of a finite null cover for some quantum mechanical experiments, i.e., a finite collection of probability zero events whose disjunction exhausts the space of experimental possibilities.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie
500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0015-9018 |
Sprache: | Englisch |
Dokumenten ID: | 55545 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:59 |
Letzte Änderungen: | 04. Nov. 2020, 13:35 |