Abstract
In this paper we introduce a new polynomial representation of the Bernoulli numbers in terms of polynomial sums allowing on the one hand a more detailed understanding of their mathematical structure and on the other hand provides a computation of B-2n as a function of B2n-2 only. Furthermore, we show that a direct computation of the Riemann zeta-function and their derivatives at k is an element of Z is possible in terms of these polynomial representation. As an explicit example, our polynomial Bernoulli number representation is applied to fast approximate computations of zeta (3);zeta (5) and zeta (7).
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 1310-5132 |
Sprache: | Englisch |
Dokumenten ID: | 55840 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 10:00 |
Letzte Änderungen: | 14. Jun. 2018, 10:00 |