Abstract
In this study the influence of the spatial distribution and of different nanostructures of WO3 and Fe2O3 in the dual absorber system Fe2O3/WO3 was systematically investigated for the first time. WO3 was applied as a scaffold and/or as a surface treatment to mesoporous Fe2O3 films. Both approaches strongly increased the performance compared to the individual photoabsorbers. By combining a host guest architecture with a surface treatment, current densities of about 0.7 mA cm(-2) at 1.23 V versus reversible hydrogen electrode under AM 1.5 illumination with an incident photon-to-current efficiency of 17% at 350 nm were achieved without the use of further catalysts. We could identify several beneficial interactions between Fe2O3 and WO3. WO3 strongly scatters visible light, resulting in increased absorption by Fe2O3 and higher current densities. We also determined a cathodic shift in the onset potential to 0.8 V and increased transfer rates of up to 88%. This combination of beneficial effects proves the viability of the presented device architecture.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Chemistry |
Research Centers: | Center for NanoScience (CENS) |
Subjects: | 500 Science > 540 Chemistry 500 Science > 500 Science |
URN: | urn:nbn:de:bvb:19-epub-55868-0 |
ISSN: | 2053-1591 |
Language: | English |
Item ID: | 55868 |
Date Deposited: | 14. Jun 2018, 10:00 |
Last Modified: | 04. Nov 2020, 13:36 |