Logo Logo
Help
Contact
Switch Language to German

Wang, Ming; Weiberg, Arne; Dellota, Exequiel; Yamane, Daniel and Jin, Hailing (2017): Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. In: Rna Biology, Vol. 14, No. 4: pp. 421-428

Full text not available from 'Open Access LMU'.

Abstract

Pathogens secrete effector proteins to suppress host immune responses. Recently, we showed that an aggressive plant fungal pathogen Botrytis cinerea can also deliver small RNA effectors into host cells to suppress host immunity. B. cinerea sRNAs (Bc-sRNAs) translocate into host plants and hijack the plant RNAi machinery to induce cross-kingdom RNAi of host immune responsive genes. Here, we functionally characterized another Bc-sRNA effector Bc-siR37 that is predicted to target at least 15 Arabidopsis genes, including WRKY transcription factors, receptor-like kinases, and cell wall-modifying enzymes. Upon B. cinerea infection, the expression level of Bc-siR37 was induced, and at least eight predicted Arabidopsis target genes were downregulated. These target genes were also suppressed in the transgenic Arabidopsis plants overexpressing Bc-siR37, which exhibited enhanced disease susceptibility to B. cinerea. Furthermore, the knockout mutants of the Bc-siR37 targets, At-WRKY7, At-PMR6, and At-FEI2, also exhibited enhanced disease susceptibility to B. cinerea, giving further support that these genes indeed play a positive role in plant defense against B. cinerea. Our study demonstrates that analysis of pathogen sRNA effectors can be a useful tool to help identify host immunity genes against the corresponding pathogen.

Actions (login required)

View Item View Item