Abstract
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (phi(p)) ranging 10(-7)-10(-3) was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for phi(p) similar to 10(-3). Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing phi(p). Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of phi(p). These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Geowissenschaften > Department für Geo- und Umweltwissenschaften |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie |
URN: | urn:nbn:de:bvb:19-epub-55960-7 |
ISSN: | 2045-2322 |
Sprache: | Englisch |
Dokumenten ID: | 55960 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 10:00 |
Letzte Änderungen: | 04. Nov. 2020, 13:36 |