Logo Logo
Help
Contact
Switch Language to German

Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D. K.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, Michael; Adiguzel, A.; Adye, T.; Affolder, A. A.; Afik, Y.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J. and Albicocco, P. (2018): Probing the Quantum Interference between Singly and Doubly Resonant Top-Quark Production in pp Collisions at sqrts=13 TeV with the ATLAS Detector. In: Physical Review Letters, 121, 152002

Full text not available from 'Open Access LMU'.

Abstract

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a W boson and a b-quark are significant. Events with exactly two leptons (ee, mumu, or emu) and two b-tagged jets that satisfy a multiparticle invariant mass requirement are selected from 36.1 fb\^-1 of proton-proton collision data taken at sqrts=13 TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within 2sigma of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

Actions (login required)

View Item View Item