Abstract
The heat capacities of a rhyolite and an andesite glass and liquid have been investigated from relative-enthalpy measurements made between 400 and 1800 K. For the glass phases, the experimental data agree with empirical models of calculation of the heat capacity. For the liquid phases, the agreement is less good owing to strong interactions between alkali metals and aluminum, which are not currently accounted for by empirical heat capacity models. The viscosity of both liquids has been measured from the glass transition to 1800 K. The temperature dependence of the viscosity is quantitatively related to the configurational heat capacity (determined calorimetrically) through the configurational entropy theory of relaxation processes. For both rhyolite and andesite melts, the heat capacity and viscosity do not differ markedly from those obtained by additive modeling from components with mineral compositions.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Mineralogy, Petrology and Geochemistry |
Subjects: | 500 Science > 550 Earth sciences and geology |
URN: | urn:nbn:de:bvb:19-epub-6031-4 |
Language: | English |
Item ID: | 6031 |
Date Deposited: | 05. Sep 2008, 08:37 |
Last Modified: | 04. Nov 2020, 12:49 |