Abstract
It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse math- ematics, and argue that they are best understood as closure conditions on the powerset of the natural numbers.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Postprint |
Keywords: | reverse mathematics; foundations of mathematics |
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) |
Themengebiete: | 100 Philosophie und Psychologie > 160 Logik |
URN: | urn:nbn:de:bvb:19-epub-60469-7 |
ISSN: | 0031-8019 |
Sprache: | Englisch |
Dokumenten ID: | 60469 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Feb. 2019, 07:06 |
Letzte Änderungen: | 04. Nov. 2020, 13:38 |