Abstract
The first human monoclonal islet cell antibodies of the IgG class (MICA 1-6) obtained from an individual with Type 1 (insulin-dependent) diabetes mellitus were cytoplasmic islet cell antibodies selected by the indirect immunofluorescence test on pancreas sections. Surprisingly, they all recognized the 64 kDa autoantigen glutamate decarboxylase. In this study we investigated which typical features of cytoplasmic islet cell antibodies are represented by these monoclonals. We show by double immunofluorescence testing that MICA 1-6 stain pancreatic beta cells which is in agreement with the beta-cell specific expression of glutamate decarboxylase. In contrast an islet-reactive IgM monoclonal antibody obtained from a pre-diabetic individual stained all islet cells but lacked the tissue specificity of MICA 1-6 and must therefore be considered as a polyreactive IgM-antibody. We further demonstrate that MICA 1-6 revealed typical features of epitope sensitivity to biochemical treatment of the target tissue which has been demonstrated for islet cell antibodies, and which has been used to argue for a lipid rather than a protein nature of target antigens. Our results provide direct evidence that the epitopes recognized by the MICA are destroyed by methanol/chloroform treatment but reveal a high stability to Pronase digestion compared to proinsulin epitopes. Conformational protein epitopes in glutamate decarboxylase therefore show a sensitivity to biochemical treatment of sections such as ganglioside epitopes. MICA 1-6 share typical features of islet cell and 64 kDa antibodies and reveal that glutamate decarboxylase-reactive islet cell antibodies represent a subgroup of islet cell antibodies present in islet cell antibody-positive sera.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-6072-1 |
Item ID: | 6072 |
Date Deposited: | 09. Sep 2008, 14:02 |
Last Modified: | 04. Nov 2020, 12:49 |