Abstract
The present study examined the role of N-methyl-D-aspartic acid (NMDA) receptors in synaptic plasticity in regular-spiking cells of rat frontal cortex. Intracortical stimulation, at levels subthreshold for elicitation of action potentials, evoked a late excitatory postsynaptic potential (EPSP) in layer II III neurons that was sensitive to the selective NMDA antagonist -2-amino-5-phosphonovaleric acid (APV). This late EPSP showed marked short-term frequency-dependent depression, suggesting that it is polysynaptic in origin. Polysynaptic late EPSPs were selectively enhanced following high-frequency stimulation. This sustained increase in synaptic efficacy, or long-term potentiation, was expressed in regular spiking cells and appeared to result from activation of NMDA receptors on excitatory interneurons. These data demonstrate the existence of an NMDA-modulated polysynaptic circuit in the neocortex which displays several types of use-dependent plasticity.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-6087-4 |
Item ID: | 6087 |
Date Deposited: | 09. Sep 2008, 16:25 |
Last Modified: | 04. Nov 2020, 12:49 |