Abstract
The collective behavior of interconnected spiking nerve cells is investigated. It is shown that a variety of model systems exhibit the same short-time behavior and rapidly converge to (approximately) periodic firing patterns with locally synchronized action potentials. The dynamics of one model can be described by a downhill motion on an abstract energy landscape, Since an energy landscape makes it possible to understand and program computation done by an attractor network, the results will extend our understanding of collective computation from models based on a firing-rate description to biologically more realistic systems with integrate-and-fire neurons.
Item Type: | Journal article |
---|---|
Faculties: | Biology > Department Biology II > Neurobiology |
Subjects: | 500 Science > 570 Life sciences; biology |
ISSN: | 0027-8424 |
Language: | English |
Item ID: | 60891 |
Date Deposited: | 11. Mar 2019, 14:16 |
Last Modified: | 04. Nov 2020, 13:39 |