Dies ist die neueste Version des Dokumentes.
Abstract
Mammalian grid cells fire when an animal crosses the points of an imaginary hexagonal grid tessellating the environment. We show how animals can navigate by reading out a simple population vector of grid cell activity across multiple spatial scales, even though neural activity is intrinsically stochastic. This theory of dead reckoning explains why grid cells are organized into discrete modules within which all cells have the same lattice scale and orientation. The lattice scale changes from module to module and should form a geometric progression with a scale ratio of around 3/2 to minimize the risk of making large-scale errors in spatial localization. Such errors should also occur if intermediate-scale modules are silenced, whereas knocking out the module at the smallest scale will only affect spatial precision. For goal-directed navigation, the allocentric grid cell representation can be readily transformed into the egocentric goal coordinates needed for planning movements. The goal location is set by non-linear gain fields that act on goal vector cells. This theory predicts neural and behavioral correlates of grid cell readout that transcend the known link between grid cells of the medial entorhinal cortex and place cells of the hippocampus.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Biologie > Department Biologie II > Neurobiologie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
ISSN: | 2375-2548 |
Sprache: | Englisch |
Dokumenten ID: | 60926 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Mrz. 2019, 14:16 |
Letzte Änderungen: | 15. Dez. 2020, 09:48 |
Alle Versionen dieses Dokumentes
-
Decoding the Population Activity of Grid Cells for Spatial Localization and Goal-Directed Navigation. (deposited 11. Apr. 2019, 06:25)
- Connecting multiple spatial scales to decode the population activity of grid cells. (deposited 11. Mrz. 2019, 14:16) [momentan angezeigt]