Logo Logo
Hilfe
Hilfe
Switch Language to English

Straka, Hans ORCID logoORCID: https://orcid.org/0000-0003-2874-0441; Baker, Robert und Gilland, Edwin (2001): Rhombomeric organization of vestibular pathways in larval frogs. In: Journal of Comparative Neurology, Bd. 437, Nr. 1: S. 42-55

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Rhombencephalic subnuclei and projection pathways related to vestibular function were mapped in larval ranid frogs. The retention of overt postembryonic rhombomeres (r) allowed direct visualization of the locations of neurons retrogradely labeled with fluorescent dextran amines from the midbrain oculomotor complex, cerebellum, vestibular nuclei, and spinal cord. Oculomotor projecting vestibular neurons were mainly located in bilateral r1/2, ipsilateral r3, and contralateral r5-8, and spinal projecting vestibular neurons mainly in ipsilateral r4 and contralateral r5. Vestibular commissural neurons were located in r1-3 and r5-7 and were largely excluded from r4. Cerebellar projecting neurons included contralateral inferior olivary neurons in r8 and vestibular neurons in bilateral r6/7 and contralateral r1/2. Mapping these results onto adult anuran vestibular organization indicates that the superior vestibular nucleus derives from larval r1/2, the lateral vestibular nucleus from r3/4, and the major portions of the medial and descending vestibular nuclei from r5-8. The lateral vestibulospinal tract projects from an origin in r4, whereas a possible ascending tract of Deiters arises in r3. Rhombomere 5 contains a nuclear group that appears homologous to the tangential nucleus of fish, reptiles, and birds and thus likely serves gravistatic and linear vestibulomotor reflexes. Comparisons between frogs and other vertebrates suggest that vestibular neurons performing similar computational roles during head movements originate from the same segmental locations in different species. (C) 2001 Wiley-Liss, Inc.

Dokument bearbeiten Dokument bearbeiten