Abstract
Labyrinthine nerve-evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in second-order vestibular neurons (2 degrees VN) sum with disynaptic inhibitory postsynaptic potentials (IPSPs) that originate from the thickest afferent fibers of the same nerve branch and are mediated by neurons in the ipsilateral vestibular nucleus. Pharmacological properties of the inhibition and the interaction with the afferent excitation were studied by recording monosynaptic responses of phasic and tonic 2 degrees VN in an isolated frog brain after electrical stimulation of individual semicircular canal nerves. Specific transmitter antagonists revealed glycine and GABA(A) receptor-mediated IPSPs with a disynaptic onset only in phasic but not in tonic 2 degrees VN. Compared with GABAergic IPSPs, glycinergic responses in phasic 2 degrees VN have larger amplitudes and a longer duration and reduce early and late components of the afferent nerve-evoked subthreshold activation and spike discharge. The difference in profile of the disynaptic glycinergic and GABAergic inhibition is compatible with the larger number of glycinergic as opposed to GABAergic terminal-like structures on 2 degrees VN. The increase in monosynaptic excitation after a block of the disynaptic inhibition in phasic 2 degrees VN is in part mediated by a N-methyl-Daspartate receptor-activated component. Although inhibitory inputs were superimposed on monosynaptic EPSPs in tonic 2 degrees VN as well, the much longer latency of these IPSPs excludes a control by short-latency inhibitory feed-forward side-loops as observed in phasic 2 degrees VN. The differential synaptic organization of the inhibitory control of labyrinthine afferent signals in phasic and tonic 2 degrees VN is consistent with the different intrinsic signal processing modes of the two neuronal types and suggests a co-adaptation of intrinsic membrane properties and emerging network properties.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Biologie > Department Biologie II > Neurobiologie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
ISSN: | 0022-3077 |
Sprache: | Englisch |
Dokumenten ID: | 61003 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Mrz. 2019, 14:16 |
Letzte Änderungen: | 04. Nov. 2020, 13:39 |