Sutor, Bernd; Hablitz, John H. (1989): EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs. In: Journal of Neurophysiology, Vol. 61, Nr. 3: S. 621-634




1. Intracellular recordings were obtained from neurons in layer II/III of rat frontal cortex. Single-electrode current- and voltage-clamp techniques were employed to compare the sensitivity of excitatory postsynaptic potentials (EPSPs) and iontophoretically evoked responses to N-methyl-D-aspartate (NMDA) to the selective NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-2-APV). The voltage dependence of the amplitudes of the EPSPs before and after pharmacologic changes in the neuron's current-voltage relationship was also examined. 2. NMDA depolarized the membrane potential, increased the neuron's apparent input resistance (RN), and evoked bursts of action potentials. The NMDA-induced membrane current (INMDA) gradually increased with depolarization from -80 to -40 mV. The relationship between INMDA and membrane potential displayed a region of negative slope conductance in the potential range between -70 and -40 mV which was sufficient to explain the apparent increase in RN and the burst discharges during the NMDA-induced depolarization. 3. Short-latency EPSPs (eEPSPs) were evoked by low-intensity electrical stimulation of cortical layer IV. Changes in the eEPSP waveform following membrane depolarization and hyperpolarization resembled those of NMDA-mediated responses. However, the eEPSP was insensitive to D-2-APV applied at concentrations (up to 20 microM) that blocked NMDA responses. 4. EPSPs with latencies between 10 and 40 ms [late EPSPs (lEPSPs)] were evoked by electrical stimulation using intensities just subthreshold to the activation of IPSPs. The amplitude of the lEPSP increased with hyperpolarization and decreased with depolarization. 5. The lidocaine derivative QX-314, injected intracellularly, suppressed sodium-dependent action potentials and depolarizing inward rectification. Simultaneously, the amplitude of the eEPSP significantly decreased with depolarization. Neither the amplitude of a long-latency EPSP nor the amplitude of inhibitory postsynaptic potentials (IPSPs) was significantly affected by QX-314. 6. Cesium ions (0.5-2.0 mM) added to the bathing solution reduced or blocked hyperpolarizing inward rectification. Under these conditions, the amplitude of the eEPSP increased with hyperpolarization. The amplitude of the lEPSP was unaltered or enhanced. 7. The lEPSP was reversibly blocked by D-2-APV (5-20 microM), although the voltage-dependence of its amplitude did not resemble the action of NMDA on neocortical neurons.