Abstract
The antennae of the grasshopper Schistocerca gregaria possess a pair of nerve pathways which are established by so-called pioneer neurons early in embryonic development. Subsequently, sensory cell clusters mediating olfaction, flight, optomotor responses, and phase changes differentiate from the antennal epithelium at stereotypic locations and direct their axons onto those of the pioneers to then project to the brain. Early in embryonic development, before the antennae become cuticularized, immunolabeling can be used to follow axogenesis in these pioneers and sensory cells. At later stages, immunolabeling becomes problematical as the cuticle is laid down and masks internal antigen sites. In order to immunolabel the nervous system of cuticularized late embryonic and first instar grasshopper antennae, we modified a procedure known as sonication in which the appendage is exposed to ultrasound thereby rendering it porous to antibodies. Comparisons of the immunolabeled nervous system of sectioned and sonicated antennae show that the cellular organization of sensory clusters and their axon projections is intact. The expression patterns of neuron-specific, microtubule-specific, and proliferative cell-specific labels in treated antennae are consistent with those reported for earlier developmental stages where sonication is not necessary, suggesting that these molecular epitopes are also conserved. The method ensures reliable immunolabeling in intact, cuticularized appendages so that the peripheral nervous system can be reconstructed directly via confocal microscopy throughout development.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Biologie > Department Biologie II > Neurobiologie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
ISSN: | 0949-944X |
Sprache: | Englisch |
Dokumenten ID: | 61092 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Mrz. 2019, 14:16 |
Letzte Änderungen: | 04. Nov. 2020, 13:39 |