Logo Logo
Switch Language to German

Nauhaus, Ian; Busse, Laura; Ringach, Dario L. and Carandini, Matteo (2012): Robustness of Traveling Waves in Ongoing Activity of Visual Cortex. In: Journal of Neuroscience, Vol. 32, No. 9: pp. 3088-3094

Full text not available from 'Open Access LMU'.


Numerous studies have revealed traveling waves of activity in sensory cortex, both following sensory stimulation and during ongoing activity. We contributed to this body of work by measuring the spike-triggered average of the local field potential (stLFP) at multiple concurrent locations (Nauhaus et al., 2009) in the visual cortex of anesthetized cats and macaques. We found the stLFP to be progressively delayed at increasing distances from the site of the triggering spikes, and interpreted this as a traveling wave of depolarization originating from that site. Our results were criticized, however, on two grounds. First, a study using the same recording techniques in the visual cortex of awake macaques reported an apparent lack of traveling waves, and proposed that traveling waves could arise artifactually from excessive filtering of the field potentials (Ray and Maunsell, 2011). Second, the interpretability of the stLFP was questioned (Kenneth Miller, personal communication), as the stLFP must reflect not only interactions between spike trains and field potentials, but also correlations within and across the spike trains. Here, we show that our data and interpretation are not imperiled by these criticisms. We reanalyzed our field potentials to remove any possible artifact due to filtering and to discount the effects of correlations within and across the triggering spike trains. In both cases, we found that the traveling waves were still present. In fact, closer inspection of Ray and Maunsell's (2011) data from awake cortex shows that they do agree with ours, as they contain clear evidence for traveling waves.

Actions (login required)

View Item View Item