Abstract
Herein, we report a new prebiotically plausible pathway towards a pyrimidine nucleobase in continuous manner. The route involves simultaneous methylation and carbamoylation of cyanoacetylene-derived alpha,beta-unsaturated thioamide with N-methyl-N-nitrosourea (MNU) in aqueous media. This provides S-methylpyrimidinone in one-pot, which can be converted into a variety of 4-substituted pyrimidine nucleobases including cytosine and uracil.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics
Horizon 2020 > Marie Skłodowska Curie Actions > Marie Skłodowska-Curie Individual Fellowships > 752420: PRENUCRNA - Prebiotic Synthesis of Pyrimidine Nucleosides: New Insights into RNA Evolution |
Publikationsform: | Postprint |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Fakultätsübergreifende Einrichtungen: | Center for Integrated Protein Science Munich (CIPSM) |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-61634-5 |
ISSN: | 1359-7345 |
Sprache: | Englisch |
Dokumenten ID: | 61634 |
Datum der Veröffentlichung auf Open Access LMU: | 09. Apr. 2019, 13:24 |
Letzte Änderungen: | 04. Nov. 2020, 13:39 |
Literaturliste: | 1 K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling and T. R. Cech, Cell, 1982, 31, 147–157. 2 C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace and S. Altman, Cell, 1983, 35, 849–857. 3 W. Gilbert, Nature, 1986, 319, 618–618. 4 T. A. Lincoln and G. F. Joyce, Science, 2009, 323, 1229–1232. 5 J. Attwater, A. Raguram, A. S. Morgunov, E. Gianni and P. Holliger, Elife, 2018, 7, e35255. 6 T. Carell, C. Brandmayr, A. Hienzsch, M. Müller, D. Pearson, V. Reiter, I. Thoma, P. Thumbs and M. Wagner, Angew. Chem. Int. Ed., 2012, 51, 7110–7131. 7 S. J. Sowerby and W. M. Heckl, Orig. Life Evol. Biosph., 1998, 28, 283–310. 8 T. Kawasaki, Y. Hakoda, H. Mineki, K. Suzuki and K. Soai, J. Am. Chem. Soc., 2010, 132, 2874–2875. 9 R. A. Black, M. C. Blosser, B. L. Stottrup, R. Tavakley, D. W. Deamer and S. L. Keller, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 13272–6. 10 J. P. Ferris, R. A. Sanchez and L. E. Orgel, J. Mol. Biol., 1968, 33, 693–704. 11 M. P. Robertson and S. L. Miller, Nature, 1995, 375, 772–774. 12 L. E. Orgel, Orig. Life Evol. Biosph., 2002, 32, 279–281. 13 C. Menor-Salván, D. M. Ruiz-Bermejo, M. I. Guzmán, S. Osuna-Esteban and S. Veintemillas-Verdaguer, Chem. Eur. J., 2009, 15, 4411–4418. 14 D. Niether, D. Afanasenkau, J. K. G. Dhont and S. Wiegand, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 4272–7. 15 M. Ferus, F. Pietrucci, A. M. Saitta, A. Knížek, P. Kubelík, O. Ivanek, V. Shestivska and S. Civiš, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 4306–4311. 16 C. Schneider, S. Becker, H. Okamura, A. Crisp, T. Amatov, M. Stadlmeier and T. Carell, Angew. Chem. Int. Ed., 2018, 57, 5943–5946. 17 S. Stairs, A. Nikmal, D.-K. Bučar, S.-L. Zheng, J. W. Szostak and M. W. Powner, Nat. Commun., 2017, 8, 15270. 18 E. Karkoschka, Icarus, 1998, 133, 134–146. 19 M. J. Loeffler, R. L. Hudson, N. J. Chanover and A. A. Simon, Icarus, 2016, 271, 265–268. 20 B. T. Golding, C. Bleasdale, J. McGinnis, S. Müller, H. T. Rees, N. H. Rees, P. B. Farmer and W. P. Watson, Tetrahedron, 1997, 53, 4063–4082. 21 T. J. Delia, M. J. Olsen and G. B. Brown, J. Org. Chem., 1965, 30, 2766–2768. 22 J. L. Jambor, D. K. Nordstrom and C. N. Alpers, Rev. Mineral. Geochem., 2000, 40, 303–350. 23 Y. Liu, X. Zhu, A. Nakamura, R. Orlando, D. Söll and W. B. Whitman, J. Biol. Chem., 2012, 287, 36683–92. 24 M. Levy and S. L. Miller, J. Mol. Evol., 1999, 48, 631–637. 25 S. Becker, I. Thoma, A. Deutsch, T. Gehrke, P. Mayer, H. Zipse and T. Carell, Science, 2016, 352, 833–6. 26 S. Becker, C. Schneider, H. Okamura, A. Crisp, T. Amatov, M. Dejmek and T. Carell, Nat. Commun., 2018, 9, 163. 27 P. A. Limbach, P. F. Crain and J. A. McCloskey, Nucleic Acids Res., 1994, 22, 2183–2196. |