
Abstract
We study the problem of linking the terms of a web-search query to a semantic representation given by the set of entities (a.k.a. concepts) mentioned in it. We introduce SMAPH, a system that performs this task using the information coming from a web search engine, an approach we call “piggybacking.” We employ search engines to alleviate the noise and irregularities that characterize the language of queries. Snippets returned as search results also provide a context for the query that makes it easier to disambiguate the meaning of the query. From the search results, SMAPH builds a set of candidate entities with high coverage. This set is filtered by linking back the candidate entities to the terms occurring in the input query, ensuring high precision. A greedy disambiguation algorithm performs this filtering; it maximizes the coherence of the solution by itera- tively discovering the pertinent entities mentioned in the query. We propose three versions of SMAPH that outperform state-of-the-art solutions on the known benchmarks and on the GERDAQ dataset, a novel dataset that we have built specifically for this problem via crowd-sourcing and that we make publicly available.
Item Type: | Journal article |
---|---|
EU Funded Grant Agreement Number: | 740516 |
EU Projects: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 740516: NonSequeToR - Non-sequence models for tokenization replacement |
Research Centers: | Center for Information and Language Processing (CIS) |
Subjects: | 000 Computer science, information and general works > 000 Computer science, knowledge, and systems 000 Computer science, information and general works > 004 Data processing computer science |
URN: | urn:nbn:de:bvb:19-epub-61862-1 |
ISSN: | 1046-8188 |
Language: | English |
Item ID: | 61862 |
Date Deposited: | 15. May 2019 06:16 |
Last Modified: | 15. Dec 2020 09:49 |