Abstract
The ultrafast fluorescence quenching of 2,6-sulfanyl-core-substituted naphthalenediimides was investigated by transient spectroscopy. We find a strong dependence of the relaxation on the chemical structure of the substituent. Direct linking of an aryl rest to the sulfur atom leads to a strong red shift of the fluorescence in 1 ps and the disappearance of the emission in 5-7 Ps depending on the polarity and viscosity of the solvent. This complex behavior is interpreted with the help of quantum chemical calculations. The calculations suggest that the initial relaxation corresponds to a planarization of the substituents and an associated partial electron transfer. This is followed by a twisting of the phenylsulfanyl substituents out of the molecular plane that allows a complete localization of the electron-donating orbital on the aryl group. Finally the back transfer happens in another 5-7 ps. For an additional methylene spacer group between the sulfur and the aryl, this sequence of relaxation steps is not possible and a simple exponential decay, slower by about 1 order of magnitude, is found.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 1089-5639 |
Sprache: | Englisch |
Dokumenten ID: | 62139 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Jul. 2019, 14:28 |
Letzte Änderungen: | 04. Nov. 2020, 13:40 |