Abstract
In this paper we show how only a few outliers can completely break down EM-estimation of mixtures of regression models. A simple, yet very effective way of dealing with this problem, is to use a component where all regression parameters are fixed to zero to model the background noise. This noise component can be easily defined for different types of generalized linear models, has a familiar interpretation as the empty regression model, and is not very sensitive with respect to its own parameters.
Dokumententyp: | Buchbeitrag |
---|---|
Keywords: | mixture models, generalized linear models, robust statistics, R |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Technische Reports |
URN: | urn:nbn:de:bvb:19-epub-6332-5 |
ISBN: | 978-3-7908-2083-6 |
Ort: | Heidelberg, Germany |
Sprache: | Deutsch |
Dokumenten ID: | 6332 |
Datum der Veröffentlichung auf Open Access LMU: | 29. Sep. 2008, 12:42 |
Letzte Änderungen: | 04. Nov. 2020, 12:49 |