Abstract
Amyloid self-assembly is linked to the pathogenesis of Alzheimer's disease (AD) and type2 diabetes (T2D), but so far, no anti-amyloid compound has reached the clinic. Macrocyclic peptides belong to the most attractive drug candidates. Herein we present macrocyclic peptides (MCIPs) designed using minimal IAPP-derived recognition elements as a novel class of nanomolar amyloid inhibitors of both A40(42) and IAPP or A40(42) alone and show that chirality controls inhibitor selectivity. Sequence optimization led to the discovery of an A40(42)-selective MCIP exhibiting high proteolytic stability in human plasma and human blood-brain barrier (BBB) crossing ability in a cell model, two highly desirable properties for anti-amyloid AD drugs. Owing to their favorable properties, MCIPs should serve as leads for macrocyclic peptide-based anti-amyloid drugs and scaffolds for the design of small-molecule peptidomimetics for targeting amyloidogenesis in AD or in both AD and T2D.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 1433-7851 |
Sprache: | Englisch |
Dokumenten ID: | 64736 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:16 |
Letzte Änderungen: | 04. Nov. 2020, 13:44 |